
Fast Best-Effort Pattern Matching
in Large Attributed Graphs

Hanghang Tong† Brian GallagherF Christos Faloutsos† Tina Eliassi-RadF
†Carnegie Mellon University FLawrence Livermore National Laboratory

†{htong, christos}@cs.cmu.edu F{bgallagher, eliassirad1}@llnl.gov

ABSTRACT
We focus on large graphs where nodes have attributes, such
as a social network where the nodes are labeled with each per-
son’s job title. In such a setting, we want to find subgraphs that
match a user query pattern. For example, a ‘star’ query would
be, “find a CEO who has strong interactions with a Manager,
a Lawyer, and an Accountant, or another structure close to
that as possible”. Similarly, a ‘loop’ query could help spot a
money laundering ring.

Traditional SQL-based methods, as well as more recent graph
indexing methods, will return no answer when an exact match
does not exist. This is the first main feature of our method.
It can find exact-, as well as near-matches, and it will present
them to the user in our proposed ‘goodness’ order. For ex-
ample, our method tolerates indirect paths between, say, the
‘CEO’ and the ‘Accountant’ of the above sample query, when
direct paths don’t exist. Its second feature is scalability. In
general, if the query hasnq nodes and the data graph hasn
nodes, the matching problem needs polynomial time complex-
ity (O(nnq)), which is prohibitive. OurG-Ray(“Graph X-
Ray”) method finds high-quality subgraphs in time linear on
the size of the data graph.

Experimental results on the DLBP author-publication graph
(with 356K nodes and 1.9M edges) illustrate both the effec-
tiveness and scalability of our approach. The results agree
with our intuition, and the speed is excellent. For instance,
it takes 4 seconds on average for a 4-node query on the DBLP
graph.

1. INTRODUCTION
Given a large graph with attributed nodes, how can we quickly

find patterns that match, say, the ‘star’ query of the abstract?
And what should we do when no exact instance of the speci-
fied pattern exists?

We proposeGraph X-Ray(G-Ray), a fast method that finds
subgraphs that either match the desirable query pattern exactly,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

or as well as possible. We propose an intuitive goodness score
g() to measure how well a subgraph matches the query pat-
tern, and we give a fast algorithm to find and rank qualifying
subgraphs. The idea of best-effort is illustrated by an exam-
ple. Figure 2.a shows a ‘line’ query on the fictitious graph of
Figure 1; since no instance of the query exists, our system re-
turns a ‘best-effort’ match, as shown in Figure 2.b. Traditional
SQL-based methods, as well as more recent graph indexing
methods, will return no answer when an exact instance of a
pattern does not exist.

Contributions.G-Rayprovides a framework and a method
for quickly finding the best-effort subgraphs that qualify for a
given pattern query on large (categorically) attributed graphs,
like author-conference networks (DBLP). Our main contribu-
tions are:

Effectiveness: G-Rayreturns the best-effort results. That is,
the matching subgraphs will include all the nodes in the
pattern query and will conform to the pattern query’s
graph structure – even when the exact pattern does not
exist in the data graph. The method carefully tolerates
longer, indirect paths, as guided by our proposed good-
ness scoreg().

Scalability: G-Rayscales up linearly (instead of polynomi-
ally) with respect to the size of the data graph.

The rest of the paper is organized as follows. Section 2 de-
scribes the formal definition of our inexact subgraph matching
problem. Sections 3 and 4 provide the overview and details of
our proposed approach, respectively. Our experimental results
are in Section 5, and related work in Section 6. We conclude
the paper in Section 7.

2. PROBLEM DEFINITION
Here, we give the formal problem definition. To start with,

we assume that only nodes in the graph have categorical at-
tributes. We shall use a running example of the fictitious so-
cial network of Figure 1, where nodes indicate people, the
(weighted) edges indicate volume of communication (e.g., num-
ber of phone-calls exchanged), and the shape of each node in-
dicates the job-title.

In this setting, the problem of Best-effort Subgraph Match-
ing is defined as follows

PROBLEM 1. Best-effort Subgraph Matching

UCRL-TR-230893

Figure 1: A simplified social network with attributes on
nodes. ’CEO’s (in Yellow Squares), ’SEC’ (secretaries, in
green circles), etc

Given: (i) A (large) graphG whose nodes have one categori-
cal attribute (like ‘job-title’), (ii) a query (small) graph
Hq showing the desirable configuration of profession-
als (e.g., a square-star-hexagon-circle loop, as in Fig-
ure 2.e), and (iii) the number of desired matching sub-
graphsn′.

Find: n′ matching subgraphsHt (t = 1, . . . , n′), that match
the queryHq as well as possible, according to a good-
ness scoreg().

Next, we will define our goodness scoring functiong(), af-
ter we define some preliminary, important terms. Notice that
the graphsHq andHt arequalitativelydifferent: the nodes
of Hq are attribute values (e.g., ‘CEO,’ ’Lawyer,’ etc), while
the nodes of the subgraphHt are data nodes (e.g., people like
‘John Smith,’ ‘Jane Doe,’ etc).

2.1 Terminology
We say that a subgraphHt (as in Figure 2.f) conformsto

a query graphHq (say, as in Figure 2.e, if the subgraph has
all the appropriate job-titles, with the correct connections be-
tween them, except that some connections may be indirect,
including additional nodes. We shall refer to these extra nodes
as intermediatenodes,and to this phenomenon as interception.
The non-intermediate nodes will be referred to as matching
nodes.Thus, node ‘12’ is an intermediate node in Figure 2.f,
because, without it, nodes 11-13-4-7 would form a perfect
loop, matching the loop query of Figure 2.e. Similarly, node
‘13’ can be viewed as an intermediate node in the same setting
with nodes 11-12-4-7 forming a perfect loop.

Whenever there is a matching subgraphHt we say that
its matching nodes instantiatethecorresponding nodes of the
query graphHq, and also that the subgraph instantiatesthe
query. In the example above (Figures 2.e-f), node ‘11’ instan-
tiates the circle node (‘secretary’) of the loop query graph.

2.2 Goodness Function

(a)Line-query (b) Resulting subgraphs

(c) Star-Query (d) Resulting subgraphs

(e)Loop-Query (f) Resulting subgraphs

(g) Elongated-star Query (h) Resulting subgraphs

Figure 2: Examples of queries and results byG-Ray

How can we measure the goodness of a matchg() between
a (conforming) subgraphHt, and a query graphHq? Intu-
itively, if two nodes are adjacent in the query graphHq, their
matching nodes should have good ‘proximity’ in the matching
subgraphHt. There are two questions: (a) how to measure the
proximity of two nodes in a graph and (b) how to combine all
these proximity scores.

For the first question, we propose to measure the proximity
ri,j between nodei and nodej as the score ofj on a random
walk with restarts, when nodei is the restarting node. Once
we decide the fly-out probabilityc (e.g. c = 0.1, as was used
in [20]), all theri,j scores are well defined, between any two
nodes in our data graphG.

For the second question, we propose to consider only the
edges of the query graph, and aggregate the proximity scores
ri,j of all the pairs of (i, j) matching nodes, where nodesi and
j match nodes of the query graph that are adjacent. For exam-
ple, in the query and subgraph example of Figures 2.e-f, and
treating node ‘13’ as the intermediate node, the goodness score
would be the combination of scores going clockwise on the
edgesr11,12, r12,4, r4,7, r7,11, and counter-clockwise:r12,11,
r11,7, r7,4, r4,12. How should we combine these scores? Should
we add them? or consider them in triplets of nodes (‘chains’)?
or in some other way? It turns out that we can take their prod-
uct, which has a probabilistic interpretation. It is the probabil-
ity that the appropriate random particles, walking on the full
data graphG with restarts, will find themselves on the match-

UCRL-TR-230893

ing nodes of the subgraphHt.
Mathematically, we define the goodness scoreg(Hq,Ht)

of a subgraphHt with respect to a query graphHq, as the
product ofri,j proximity scores of the matching nodes, taken
pairwise according to the matched edges ofHq.

DEFINITION 1 (GOODNESS FUNCTION). Consider a query
graphHq and a conforming data subgraphHt, with match-
ing functionm(i) = v (i.e., data nodei matches/instantiates
query nodev), then the goodness functiong(Hq,Ht) is de-
fined as

g(Hq,Ht) =
∏
i,j

ri,j where ((m(i), m(j)) : edge inHq

(1)

Thus, Problem 1 is well defined. Given a data graphG and
a query graphHq, find the bestn′ matching subgraphs (best
according to the aforementioned goodness functiong()).

2.3 Discussion
Problem 1 is polynomial for fixed-size pattern queries. This

is prohibitive for large data graphs. Suppose you have a data
graphG with size n = (|V |) and a query graphHq with
sizenq = (|Vq|), then for afixed-sizenq the subgraph iso-
morphism problem is polynomial(O(nnq)). G-Ray, on the
other hand, has time complexity linearly on the size of the data
graph.

There are some additional observations and potential gen-
eralizations, before we go to an example. In this work, we
assume there is only one attribute (eg., job-title), withm pos-
sible categorical values (v1= ‘CEO’, v2= ‘Manager’ etc, in our
example). Formally, the attributed graphG can be described
by ann × n node-to-node matrixW and ann ×m node-to-
attribute matrixA: G = {W = [wi,j],A = [ai,k]}. Every
two nodes(i, j) are associated with a nonzero weightwi,j if
there exists an edge between them. For every nodei, it is asso-
ciated with an attribute vector~ai = [ai,1, ..., ai,m]T : ai,k = 1
if nodei is labelled withkth attribute value; 0 otherwise.

The queryHq is another (usually much smaller compared
with G) graph. The nodes ofHq are labelled with 1-out-of-
m attribute values, indicating what kinds of nodes we want,
while the edges ofHq indicate what kinds of connection we
require between different nodes. AsG, the query graph can
also be denoted by two matrices: asHq = {Wq,Aq}. Simi-
larly, every resulting subgraph is also denoted by two matrices:
Ht = {Wt,At}.

Table (1) gives all the symbols used in the paper. Following
standard notation, we use calligraphic for subgraphs (e.g.Hq,
G,H), bold capitals for matrices (e.g.W, A), and an arrow for
column vector (e.g.~ai). Since we have two graphs (G,Hq) as
inputs, for clarification, we reservei, j as the indices for the
nodes inG, (i, j) as the index for the edges inG. We reserve
k, l as the indices for the nodes inHq, (k, l) as the index for
the edges inHq. For the nodei in G, it can be uniquely identi-
fied by〈i,~aT

i 〉. If the nodei in G only has one attribute value
k (or we only care for itskth attribute value), we also denote
it as〈i, k〉 for simplification.

2.4 An Illustrative Example
As we mentioned, we allow best-effort matching, in the

sense that we allow for indirect paths, when the desirable di-
rect paths do not exist.

Figure 1 gives a simplified social network (who-talks-to-
whom) with their job title as the node attribute, which can
take 1-out-of-4 values:“Accountant”, “Manager”, “CEO”, and
“SEC” (short for ‘secretary’). Thus, the who-talks-to-whom
graphG is a14 node-to-node matrixW and a14 × 4 node-
to-attribute matrixA. For example, if we store the attribute
values “Accountant”, “Manager”, “CEO”, and “SEC” sequen-
tially, the attribute vector~a4 = [1 0 0 0]T since node 4 is
labelled as “Accountant”(the first attribute value). Thus, we
can identify node 4 in this graph by either〈4, [1 0 0 0]T 〉 or
simply as〈4, 1〉 (since here every node is only labelled by one
attribute value.)

Figure 2 shows some sample queries as well as the corre-
sponding results. Figure 2.a is a line-query, that is “finding
Accountant, Manager, SEC and CEO such that, the qualifying
Manager has strong connection with CEO as well as Accoun-
tant; while the qualifying CEO has strong connection with
Manager and SEC”. Figure 2.b shows a best-effort match (the
connection between node 11 and node 13 is indirect)1. Fig-
ure 2.d shows an exact match for a star-query(c), that is “find
an Accountant, a Manager, a SEC and a CEO such that the
qualifying Manager has strong connections to the other 3”.
Figures 2.e-h show some more complicated queries and cor-
responding results. Again, the results are not exact, but best-
effort.

3. PROPOSED METHODS: OVERVIEW

3.1 Preliminaries: Interaction with SQL
If we only wanted exact matches, we could write SQL queries

to identify any and all of the patterns in the left column of Fig-
ure 2. G-Rayhas two distinct advantages: (a) it can allow for
best-effort matches (tolerating longer, indirect paths, when di-
rect paths do not exist) and (b) due to our proposed goodness
functiong(), it can rank the output and avoid flooding the user
with a potentially huge number of near-unimportant matches.

On the other hand, our method can easily incorporate SQL,
if necessary; that is we can always use our algorithmtogether
with , rather than‘against’, SQL-based methods. For example,
if there exist many exact matching results, we can use SQL as
a pre-processing step for finding all the results and then feed
them toG-Ray to find a few ‘best’ ones, and/or to rank the
results.

3.2 Preliminaries: Random Walks and CePS
Our G-Raymethod uses two stepping stones: the random

walk with restart idea [16, 20] and of the CenterPiece Sub-
graphs idea [19]. The former is necessary to estimate our pro-
posed goodness functiong(), as shown in equation (1). There
are fast algorithms to compute or partially pre-compute the
desirableproximity scoresri,j for every pair of nodes (i, j).
G-Rayis completely independent of how the proximity scores
are computed, and thus it can easily take advantage of any fast
method, as well as any faster method that may appear in the
future.

The other stepping stone is the CenterPiece Subgraphs (CePS),
which operate on a plain graph (no attributes on the nodes),
and find the few most central (’CenterPiece’) people that are

1For the query examples shown here,G-Rayalso finds other
exact matches, e.g. the subgraph containing nodes 1, 5, 11, 12
for the line-query. For clarity of exposition, we omit them.

UCRL-TR-230893

Table 1: Symbols
Symbol Description

G = {W,A} theattributed graph
W = [wi,j] then× n node-to-nodematrix (i, j = 1, ..., n) for G
A = [ai,k] then×m node-to-attribute matrix(i = 1, ..., n, k = 1, ..., m) for G

n thetotal number of nodes in the attributed graphG
m thetotal number of attribute values
nl thetotal number of nodes inG having attribute valuel
i, j theindices for nodes inG. Correspondingly,(i, j) is the index for the edges inG
~ai theattribute vector for nodei in G. ~ai = [ai,1, ..., ai,m]T

Hq = {Wq,Aq} theattributed query graph
nq thenumber of nodes in the query graph
k, l theindices for nodes inHq. Correspondingly,(k, l) is the index for the edges inHq

Ht = {Wt,At} theresulting matching subgraphs (t = 1, ..., n′)
n′ thenumber of required subgraphs
c thefly-out probability of random walk with restart

ri,j thesteady-stateprobabilitythat a particle will find itself at nodej when it does
randomwalk with restart from nodei in G

rl,k thesteady-stateprobabilitythat a particle will finally find itself at attribute nodek
whenit does random walk with restart from attribute nodel in Hq.

well connected to thek given query nodes. For example, if
‘Smith’, ‘Johnson’ and ‘Thompson’ are data mining researchers,
the query would bewho are the researchers that are most cen-
tral to all three of them?(where links are papers co-authored).
CePS is able to quickly find such central/CenterPiece nodes,
and we make heavy use of it.

3.3 The Outline ofG-Ray

Since we allow inexact match, there might be two types of
nodes in resulting conforming subgraphs:matchingdata nodes
and intermediatedata nodes: nodes to bridge two matching
nodes when no direct connection exists between them.

Given a query graphHq, how to start looking for promis-
ing subgraphsHt, that is, data subgraphs that may have high
goodness scoreg()?

Our idea is best illustrated with an example. This time we
shall use the ‘line’ query of Figure 2(a). At the high level, we
want to find good starting points (seeddatanodes), like square
(CEO) nodes surrounded by many circles (SEC) and many
hexagonal (Manager) nodes. Say we find that node ‘13’ is the
most promising such CEO node. The measure for ‘promise’
will be firmly defined next - and in fact, it is the CenterPiece
node of a carefully designed setting.

Once we have decided on a good ‘seed’, we want to expand
to create a full, conforming subgraph. For the line query sce-
nario above,G-Raywill choose the best neighboring node of
the necessary type (say, ‘SEC’), and then look for the best path
to connect them. In our example, suppose that node ‘11’ is the
best neighboring node, andG-Rayhas to go through node ‘12’
to connect the CEO at ‘13’ with the ‘SEC’ at ‘11’.

The algorithm continues until the seed node ’11’ is expanded
to a full, conforming subgraph (if possible); by its construc-
tion, the resulting subgraph will have a high goodness score.

We can repeat with another seed node, until the user has all
n′ matching subgraphs that he requested.

Thus, there are three basic modules inG-Ray:

• Seed-Finder: It selects a desired attribute-value node
from the query graphHq; and it finds a “very promis-

ing” matching data node with that attribute value ac-
cording toHq whenHt is empty

• Neighbor-Expander: It expands the seed node, by find-
ing a “good” matching node with the desired attribute
value according toHq whenHt is partially built

• Bridge : It finds a “good” path to connect two matching
data nodes if they are required to be connected accord-
ing toHq

Algorithm 1 G-Ray

Require: The attributed graphG, the query graphHq,and the
number of resulting subgraphsn′.
Output : The resulting subgraphsHt(t = 1, ..., n′)

1: for t = 1 : n′ do
2: initialization
3: find matching node〈i, k〉 by Seed-Finder;
4: add〈i, k〉 toHt, and mark nodek in Hq as “touched”
5: repeat
6: pick up a “touched” nodek in Hq

7: for each ofk’s “un-processed” edges(k, l) inHq do
8: find matching node〈j, l〉 by Neighbor-Expander
9: find a “best” path betweeni andj by Bridge

10: add it toHt; mark edge(k, l) as “processed”
11: end for
12: update the status of nodek andl in Hq

13: until every node inHq is marked as “processed”
14: end for

It can be seen thatG-Raygenerates resulting conforming
subgraphsHt(t = 1, ..., n′) one by one. For each subgraph,
it first sets (step 2)Ht to be NULL; every nodek in Hq

is marked as “un-processed”; and every edge(k, l) in Hq is
marked as “un-processed”. Then,G-Raybuilds the subgraph
Ht gradually, by the above three modules:Seed-Finder Neighbor-
Expander andBridge . In additional, we also need to keep

UCRL-TR-230893

track of the status of the nodes and edges in the query graph
Hq, which is defined as following:

• An edge(k, l) in Hq is “processed” iff 1) there exist
two matching nodes in〈i, k〉 and 〈j, l〉 in Ht, and 2)
Bridge has been applied to these two nodes; otherwise
the edge(k, l) is “un-processed”.

• A node k in Hq is “processed” iff all of its adjacent
edges have been marked as “processed”; the nodek
in Hq is “un-touched” iff all of its adjacent edges in
Hq have been marked as “un-processed”; otherwise the
nodek inHq is “touched”

4. PROPOSED METHODS: DETAILS
In this section, we provide the details ofG-Ray. There are

three basic modules ofG-Ray, as we mentioned before. In
the first two,Seed-Finder andNeighbor-Expander , we find
those matching nodes with desired attribute values; theBridge mod-
ule identifies intermediate nodes (if necessary) and finds a “best
path” to connect two matching nodes.

4.1 Seed-Finder

Seed-Findertakes the attributed graphG, the query graph
Hq and the one attribute valuek in Hq

2 as input, and outputs
a qualifying seed node〈i, k〉 in G.

Letg(Hq, i) be the goodness function for a given node〈i, k〉:

g(Hq, i) ,
∏

j,j 6=i

rj,i (m(i) = k, m(j) = l) : edge inHq

(2)
It can be seen thatg(Hq, i) is the contribution of node〈i, k〉

for the total goodness function in equation (1). Thus, if all
of k′s neighbors have been instantiated/matched, we can just
choose seed node〈i, k〉 by optimizing equation (2).

However, since the resulting subgraphHt is empty, to en-
sure that the final subgraphHt is well connected, a matching
node〈i, k〉 should also have high proximity score withsome
unknown node〈j, l〉, even if the attribute valuek is not di-
rectly adjacent tol in the query graphHq (as long as they are
closely related to each other), Moreover, if in the query graph
Hq, the attribute valuek is closely related to two different
attribute valuesl and l′, we should give more weight to the
attribute value that is more relevant withk. Finally, since the
resulting subgraphHt is empty, we really do not know which
node〈j, l〉 in graphG should be referred to. Thus, we relax
this quantity to the average proximity score for node〈i, k〉 wrt
all the nodes〈j, l〉 in graphG.

Formally,g(Hq, i) in Seed-Finder is relaxed as follows:

g(Hq, i) =
∏

l, l6=k

(
1

nl

∑

{j|m(j)=l}
rj,i)

1
rl,k (3)

wherenl is the total number of nodes inG having attributel;
andrl,k measures the proximity betweenl andk by random
walk with restart onHq(see Table 1).

The pseudo code ofSeed-Finderis given in Alg.(2). Note
that in step 7, we maintain a global seed list (sl) which contains
all the seeds found in the previous subgraphs(H1, ...,Ht−1).

2In this paper, we always choose the attribute value with the
highest degree inHq.

In this way, we ensure that different subgraphs have different
seeds.

Algorithm 2 Seed-Finder
Require: The attributed graphG, the query graphHq, and

one attribute valuek in Hq.
Output : One matching seed node〈i, k〉 in G

1: for eachl ∈ Hq(l 6= k) do
2: computerl,k

3: end for
4: for each〈i, k〉 in G do
5: computeg(Hq, i) by equation (3)
6: end for
7: return: i = argmaxj /∈sl g(Hq, j)

4.2 Neighbor-Expander

Neighbor-Expander takes as input the attributed graphG,
the query graphHq, one “touched” attribute valuek in Hq ,
and the partially built subgraphHt; and outputs a matching
node〈i, k〉 in G.

The basic idea ofNeighbor-Expander is similar with that
of Seed-Finder. However, at this point, we already have the
partially built subgraphHt, which makes the following differ-
ence between the two modules.

First of all, sincek is marked as “touched”, at least some
of its edges inHq must have been marked as “processed”.
Suppose edge(k, l) is marked as “processed”, there must ex-
ist some matching nodes〈j, l〉, which can be used in calcu-
lating g(Hq, i). Secondly, given a node〈i, k〉, while Seed-
Finder relaxes its goodness functiong(Hq, i) to all attribute
nodes (except nodek itself) in the query graphHq; in Neighbor-
Expander , since the resulting subgraphHt is already par-
tially built, we do not need this relaxation to ensure that the
final Ht is well-connected. Finally, while inSeed-Finder ,
the (relaxed) average score (e.g. equation (3)) is weighed by
the proximity betweenl andk, in Neighbor-Expander , it is
not weighted (since everyl is directly adjacent tok, rl,k does
not make much difference).

Formally, the goodness functiong(Hq, i) in this case is re-
laxed as equation (4). Note that the indicator functionI(l, k) =
1 if edge (l, k) in Hq is marked as“processed”, and 0 oth-
erwise. Also the whole product is taken amongk’s directly
adjacent neighbors inHq. The pseudo code ofNeighbor-
Expander is given in Alg. (3).

g(Hq, i) =
∏

l, (k,l)

(
1

nl

∑

{j|m(j)=l}
rj,i)

1−I(l,k)(rj,i)
I(l,k) (4)

Algorithm 3 Neighbor-Expander
Require: The attributed graphG, the query graphHq, one

“touched” attribute valuek in Hq, and the partially built
subgraphHt.
Output : One qualifying node〈i, k〉 in G

1: for each〈i, k〉 in G do
2: computeg(Hq, i) by equation (4)
3: end for
4: return: i = argmaxj /∈Ht

r(Hq, j)

UCRL-TR-230893

4.3 Bridge

Bridge takes as input two matching nodesi andj, and the
attributed graphG; and outputs a “best path” to connecti and
j.

At first glance, we can use the “EXTRACT” algorithm in [19]
or the display generation algorithm in [7]. However, the situ-
ation is different in our problem setting. First of all, as the
matching subgraphHt grows, some intermediate nodes might
be already in the partially builtHt, both “EXTRACT” [19]
and display generation algorithm [7] willfavor such kind of
paths because of the total budget limitation on the size of the
subgraph. However in our problem setting, weforbid such
paths. Otherwise,Ht might not conform with the query graph
Hq because of path overlap. What is more important, here, we
only need to find one, rather than multiple “best” paths as in
“EXTRACT” and display generation algorithm, which enable
us to design a more efficient, Prim-like, algorithm. Formally,
we define the “best path” between two matching nodesi andj
as the one that maximizes the totally captured proximity score
along the path over the total length of the path. Intuitively, a
“best path” should contribute as much as possible for a particle
to reachj from i when it does random walk with restart from
nodei.

The pseudo code ofBridge is given in Alg. (4). Note that
in step 8, if the nodev is already in theHt, we will block it.

Algorithm 4 Bridge
Require: The attributed graphG, two matching nodesi, j,

and the partially built subgraphHt.
Output : One “best” path connecting nodei andj in G

1: letV be the total node set inG: V = {1, 2, ..., n},
2: letX = {i}, d(i) = ri,i, len(i) = 1, and Pre(i) = i
3: for each nodeu in V do
4: d(u) = 0, len(u) = 0
5: end for
6: while V is not emptydo
7: u = argmax̃u∈V d(ũ), moveu from V to X
8: for each edge(u, v) in G, v ∈ V , andv /∈ Ht do
9: if d(v) <

ri,v+d(u)len(u)

len(u)+1
then

10: d(v)=
ri,v+d(u)len(u)

len(u)+1
, len(v)=len(u)+1,Pre(v)=u

11: end if
12: end for
13: end while
14: Output the path fromi to j by tracing back Pre(j).

4.4 Efficiency Issues
In G-Raywe use random walk with restart. First of all,

the size of the query graphHq (usually less than 10 nodes)
is much smaller than the attributed graphs, so the main time
cost lies in the random walk with restart inG. In this subsec-
tion, we first reduce the total number of random walks with
restart by constructing anaugmented graph(to be described
next); and then we use a hybrid strategy to perform one only
random walk with restart.

Based on equations (3, 4), we will have to do a lot of random
walk with restart. For example, to one item ing(Hq, i) for
a given node〈i, k〉, we neednl random walk with restart if
edge(k, l) has been marked as “un-processed”. Thus, totally
we will need at most(nq +

∏
l∈Hq

nl) random walk with

restart, which might be very time consuming. However, based
on the following Lemma, the number of random walks with
restart can be largely reduced. We give the formal definition
of theaugmented graph, and then follow with an example (see
Figure 3).

LEMMA 1. Given an attributed graphG = {W,A}, con-
struct an augmented graphW′ as equation (5). Letr′j,i(1 ≤
i, j ≤ n + m) be thesteady-state probabilitythat a particle
will find itself at nodei when it does random walk with restart
from nodej in the augmentedW′. Then the following equiv-
alence holds:

1

nl

∑

{j|m(j)=l}
rj,i =

1

(1− c)
r′l+n,i

W′ =

(
W 0
A 0

)
(5)

PROOF. Omitted for brevity 2

In the augmented graphW′, we refer to the newly added
nodes asattribute nodes, and to the original nodes inW as
data nodes. Intuitively, we put a directed edge from the at-
tribute node to each of the data nodes having the corresponding
attribute value. For example, Figure 3 is the augmented graph
for the simplified social network in Figure 1. We introduce a
new node for the attribute value CEO; and put a directed edge
from this node to both nodes 12 and 13, respectively (For the
other attribute values, we process similarly).

In order to measure the average proximity for a given node
i wrt all the data nodes having attribute valuel in G, according
to Lemma 1, we only need to do random walk with restart
from the corresponding attribute node(n+l) in the augmented
graphW′. Based on Lemma 1, it can be proved that we only
need at most2nq random walk with restart on the augmented
graphW′.

Figure 3: Augmented graph for the attributed graph in
Figure 1. Small-size glyphs stand for “attribute” nodes,
and have (directed) connections to the corresponding data
nodes.

The most straightforward way to solve one random walk
with restart is the iterative method [16], which is simple and
accurate. However, it is slow for large graphs. In literatures,

UCRL-TR-230893

thereare many fast/approximate solutions, e.g. BlockRank [12],
Fingerprint based method [8], Blin [20], etc. It should be
pointed out that these methods are orthogonal toG-Ray– in
principle, we can choose any of them. In this paper, we use a
hybrid strategy: we use the BLin in [20] to generate a small
fraction of the whole attributed graphG as the so-called can-
didate graph; and then run the whole algorithm on this can-
didate graph by the iterative method. As we will show in the
next section, this strategy will largely reduce the response time
(usually 1 order of magnitude faster).

5. EXPERIMENTAL EVALUATION
We present experiments to answer the following questions:

• effectivenessof our goodness functiong(): that is, whether
the matching graphs agree with our intuition.

• speedandscalability: how doesG-Rayscale up for large
graphs.

We present the results next, after we describe our experimental
setup.

5.1 Experimental Setup

5.1.1 Data
We use the DBLP data set3 to construct the attributed graph,

where the nodes are authors and the attribute is the conference
name (and year, e.g., ‘KDD-2001’). The node-to-node ma-
trix W is constructed from the authorship (wi,j is the number
of the co-authored paper between authori andj); the node-
to-attribute matrixA is constructed from author-conference
relationship (ai,j = 1 if the authori has ever published in
the conferencej, 0 otherwise). In total, there aren=356,364
nodes;E=1,905,970 edges, andm=12,920 attribute values in
the graph.

5.1.2 Parameter Settings
The selection of the appropriate size for the candidate graph

is a trade-off between the response time and the quality/goodness
of the resulting subgraphs. We perform a parametric study
as follows: for a given size of candidate graph, we issue a
4-node query and return the top-5 subgraphs. We test differ-
ent types of queries (namely, line-query, loop-query, and star-
query). For each type of query, the experiment is run multiple
times.

Figure 4 shows the mean log quality/goodness vs. the aver-
age response time per subgraph. There is a plateau in Figure 4
at (log) goodness = -30, starting at 3 seconds of average re-
sponse time). At this point, the size of the candidate graph is
1% of the whole graph. Thus this is the ratio that we use in the
remaining experiments.

There are two parameters left, the fly-out probabilityc of
random walk with restart, and the number of iterations for the
iterative method. In all the experiments,c is set to0.1 and
the number of iterations is set to 50 since no performance im-
provement is observed with more iterations.

5.2 Effectiveness

3http://www.informatik.uni-trier.de/ ˜ley/db/

1 2 3 4 5 6 7 8
−80

−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

−25

Average response time per subgraph (Sec)

Lo
g

of
 g

oo
dn

es
s

fu
nc

tio
n

Figure 4: Quality vs. response time. Notice the plateau,
starting at about 3 seconds.

The question is how effective our proposed goodness func-
tion g() is, and whether the subgraphs thatG-Ray retrieves
would agree with the intuition of a domain expert.

Figures 5.a-f show three queries (star, line, loop) and the
resulting subgraphs retrieved from the DBLP graph. In all the
cases, the results make sense.

Let us analyze the ‘star’ query first, which requests a star-
shape group of co-authors, with one author from each of PODS,
IAT (‘Intelligent Agent technology’) and ISBMS (‘Interna-
tional Symposium on Biomedical Simulation’). We see that
Philip Yu is in the center, with the rest of the matching nodes
being well-known domain experts (Haixun Wang and Mark
Zhang for Agents); the connection to biomedical simulation is
strained, requiring an interception by Bing Liu.

For the line query (‘find a chain of co-authors, from STOC
to SIGMOD to ICML to ISBMS’), againG-Rayretrieves well
established researchers from theory (Charikar), databases (Garcia-
Molina), machine learning (Fayyad). Again, the connection
to biomedical simulation is strained, requiring 3 intermediate
nodes (in white/unshaded).

The loop query (KDD, RECOMB, INFOCOMM, and ICML)
is also very interesting. There is a gap between KDD96 and
RECOMB00 (biology); there is a surprising, direct link be-
tween biomedical and computer networks (Karp-Shenker); and
there is a long path from INFOCOMM00 to ICML93 (proba-
bly due to both the chronological difference, as well as the lack
of interaction between the research communities).

5.3 Efficiency
We use different sizes of subsets of the whole DBLP data

set to test howG-Rayscales with the size of the graph. For
each subset, we randomly generate a 4-node query of different
types (star-query, line-query, and loop-query) and return the
top-5 subgraphs. For each type of query, we run the experi-
ment multiple times and report the average response time. We
compared two strategies to perform random walk with restart
G-Ray: (1) using an iterative method on the whole subset (Ite-
G-Ray) and (2) using a hybrid strategy as described in Sec-
tion 4.4 (Fast-G-Ray).

The average response time per subgraph vs. the number of
nodes/edges is presented in Figure 6. It can be seen that in both
cases,G-Rayscales linearly with the size of the graphs. More
importantly, Fast-G-Rayscales linearly with a much smaller

UCRL-TR-230893

slope. For example, on the full size of graph (356K nodes
and 1.9M edges), the average response time per subgraph is3
seconds, while it takes more than 1 minute for Ite-G-Ray.

0 0.5 1 1.5 2

x 10
6

0

10

20

30

40

50

60

70

80

of edges in graphs

A
ve

ra
ge

 r
es

po
ns

e
tim

e
pe

r
su

bg
ra

ph
 (

S
ec

) Fast−G−Ray
Ite−G−Ray

(a)Average response time vs. number of edges

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

10

20

30

40

50

60

70

80

of nodes in graphs

A
ve

ra
ge

 r
es

po
ns

e
tim

e
pe

r
su

bg
ra

ph
 (

S
ec

) Fast−G−Ray
Ite−G−Ray

(b) Average response time vs. number of nodes

Figure 6: Scalability of G-Ray. Time versus data graph
size. Both versions ofG-Ray scale linearly, with Fast-G-
Ray(bottom) having significantly lower slope.

6. RELATED WORK
Graph matching algorithms vary widely due to differences

in the specific problems they address.G-Rayis a fast approxi-
mate algorithm for inexact pattern matching in large, (categor-
ically) attributed graphs.G-Rayextends the ideas of connec-
tion subgraphs [7] and centerpiece graphs [19, 20] and applies
them to pattern matching in attributed graphs. This work is
also related to the idea of network proximity, which builds on
connection subgraphs as well [13].

While there has been a large amount of work on graph match-
ing over the past 30 years, much of it is not directly applica-
ble to our problem setting. Many graph matching techniques
focus strictly on matching graph structure and do not utilize
attributes. Other work focuses on exact matching, but cannot
handle inexact matching. Still other methods focus on match-
ing against a database of many small graphs (i.e., the graph-
transaction setting) instead of a single large graph (i.e., the
single-graph setting). The single-graph setting is more general
and algorithms developed for single graphs can be readily ap-
plied to the graph-transaction setting, although the converse is
not true [15]. For additional background on graph matching
algorithms, we refer the reader to a recent survey by Gallagher

[9].
There has been significant work on inexact graph match-

ing [18, 21, 10, 22, 5, 1], on matching attributed graphs [21,
18, 10, 3, 22, 5], and on matching in the single-graph setting
[3, 22, 5, 1]. However, there are relatively few algorithms
that combine the three to tackle inexact matching in large, at-
tributed graphs [6, 22, 5, 1]. Furthermore, while these algo-
rithms employ various optimizations to mitigate the computa-
tional complexity of the problem, they all exhibit super-linear
complexity in the worst case. Unfortunately, it is also diffi-
cult to determine the performance characteristics of these al-
gorithms due to a lack of reported results and complexity anal-
ysis.

In addition to the graph matching work described above,
there is related work of interest in the database and data min-
ing literature. Our work focuses on finding instances of user-
specified patterns in graphs. Related problems include discov-
ery of frequent or interesting patterns (i.e., graph mining) and
inexact querying of databases.

Yan, Yu, and Han propose efficient methods for indexing
and mining graph databases based on the occurrence of fre-
quent substructures [23, 24]. Jin et al. use the concept of a
topological minor to quickly discover frequent large-scale pat-
terns [11]. As with many of the graph matching techniques de-
scribed above, these mining algorithms are designed for graph-
transactional databases (e.g., collections of biological or chem-
ical structures) and are not readily applicable to the single-
graph setting. Cook and Holder [6] and Kuramochi and Karypis
[15] propose algorithms for graph mining in the single-graph
setting. The empirical evaluation by the latter shows that their
method outperforms that of Cook and Holder in terms of run-
time on a number of real data sets. Pei et al. [17] take on a
somewhat different graph mining task. Their goal is to dis-
cover quasi-clique patterns across multiple related graph data
sets (e.g., groups of customers with similar behavior across
markets). We refer the reader to Chakrabarti’s book [4] on
web mining for a more information on web and graph mining
techniques.

We also find related work in the area of inexact querying of
relational databases. Koudas et al. [14] propose a method for
relaxing relational database queries to accommodate near, but
inexact matches. However, this work does not support inex-
act structural matching. The method will relax attribute value
conditions and join conditions, but there is no flexibility in
terms of what relations are involved in the joins. The BANKS
system proposed by Bhalotia et al. [2] enables a user to is-
sue keyword-based queries to a relational database without
any knowledge of the underlying database schema. BANKS
models database tuples as nodes in a graph, but is restricted to
return tree-structured results.G-Rayimposes no such restric-
tion. In addition, BANKS assesses relevance of results based
on the proximity of matching nodes and an information re-
trieval inspired weighting scheme. In our method, results are
ranked according to our goodness function (which is based on
proximity of nodes in a graph).

7. CONCLUSION
We have addressed the problem of finding best-effort sub-

graph patterns in attributed graphs. The typical query is, say,
’find a potential money laundering ring, consisting of alter-
nating nodes of businessmen and bankers’. To the best of our

UCRL-TR-230893

knowledge, this is the first method that returns best-effort re-
sults, even when the exact pattern does not exist in the data
set. The second major characteristic of our method is that it
scales very well with the database size: our experiments show
that the wall-clock time grows near-linearly with the size of
the graph.

We also report experiments on the DBLP dataset (356K
nodes, 1.9M edges), where the results agree with intuition, and
the wall-clock time is about 3-5 seconds, on a commodity PC.

Future work includes extension to handle attributes on the
edges.

8. ACKNOWLEDGEMENT
This work was supported by and performed under the aus-

pices of the U.S. Department of Energy by University of Cal-
ifornia Lawrence Livermore National Laboratory under con-
tract No. W-7405-ENG-48. UCRL-CONF-XXXXXX.

9. REFERENCES
[1] B. Aleman-Meza, C. Halaschek-Wiener, S. Sahoo,

A. Sheth, and I. Arpinar.Lecture Notes in Computer
Science, volume 3495, chapter Template Based
Semantic Similarity for Security Applications, pages
621–622. Springer, 2005.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in
databases using banks. InICDE ’02: Proceedings of the
18th International Conference on Data Engineering,
pages 431–440, 2002.

[3] H. Blau, N. Immerman, and D. Jensen. A visual
language for querying and updating graphs. Technical
Report 2002-037, Department of Computer Science,
University of Massacheusetts, Amherst, 2002.

[4] S. Chakrabarti.Mining the Web: Discovering
Knowledge from Hypertext Data. Morgan-Kauffman,
2002.

[5] T. Coffman, S. Greenblatt, and S. Marcus. Graph-based
technologies for intelligence analysis.Communications
of the ACM, Special Issue on Emerging Technologies for
Homeland Security, 47(3):45–47, 2004.

[6] D. J. Cook and L. B. Holder. Substructure discovery
using minimum description length and background
knowledge.Journal of Artificial Intelligence Research
(JAIR), 1:231–255, 1994.

[7] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast
discovery of connection subgraphs. InKDD ’04:
Proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
page 118127, 2004.

[8] D. Fogaras and B. Racz. Towards scaling fully
personalized pagerank. InProc. WAW, pages 105–117,
2004.

[9] B. Gallagher. Matching structure and semantics: A
survey on graph-based pattern matching. InAAAI FS
’06: Papers from the 2006 AAAI Fall Symposium on
Capturing and Using Patterns for Evidence Detection,
pages 45–53, 2006.

[10] N. Guarino, C. Masolo, and G. Vetere. Ontoseek:
Content-based access to the web.IEEE Intelligent
Systems, 14(3):70–80, 1999.

[11] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, and
G. Agrawal. Discovering frequent topological structures
from graph datasets. InKDD ’05: Proceedings of the
11th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
606–611, 2005.

[12] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub.
Exploiting the block structure of the web for computing
pagerank. InStanford University Technical Report,
2003.

[13] Y. Koren, S. North, and C. Volinsky. Measuring and
extracting proximity in networks. InKDD ’06:
Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 245–255, 2006.

[14] N. Koudas, C. Li, A. Tung, and R. Vernica. Relaxing
join and selection queries. InVLDB ’06: Proceedings of
the 32nd International Conference on Very Large Data
Bases, pages 199–210, 2006.

[15] M. Kuramochi and G. Karypis. Finding frequent
patterns in a large sparse graph.Data Mining and
Knowledge Discovery, 11(3):243–271, 2005.

[16] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu.
Automatic multimedia cross-modal correlation
discovery. InKDD, pages 653–658, 2004.

[17] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph
quasi-cliques. InKDD ’05: Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2005.

[18] L. Shapiro and R. Haralick. Structural descriptions and
inexact matching.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 3:504–519, 1981.

[19] H. Tong and C. Faloutsos. Center-piece subgraphs:
Problem definition and fast solutions. InKDD ’06:
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 404–413, 2006.

[20] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk
with restart and its applications. InICDM ’06:
Proceedings of the 6th IEEE International Conference
on Data Mining, pages 613–622, 2006.

[21] W.-H. Tsai and K.-S. Fu. Error-correcting isomorphisms
of attributed relational graphs for pattern analysis.IEEE
Transactions on Systems, Man and Cybernetics,
9:757–768, 1979.

[22] M. Wolverton, P. Berry, I. W. Harrison, J. D. Lowrance,
D. Morley, A. C. Rodriguez, E. H. Ruspini, and
J. Thoḿeŕe. Law: A workbench for approximate pattern
matching in relational data. InIAAI ’03: Proceedings of
the Fifteenth Conference on Innovative Applications of
Artificial Intelligence, pages 143–150, 2003.

[23] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. InICDM ’02: Proceedings of the 2nd
IEEE International Conference on Data Mining, pages
721–724, 2002.

[24] X. Yan, P. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. InICDM ’04: Proceedings of
the 4th International Conference on Data Mining, pages
335–346, 2004.

UCRL-TR-230893

(a)The star-query (b) One resulting subgraph

(c) The line-query (d) One resulting subgraph

(e)The loop-query (f) One resulting subgraph

Figure 5: Some typical queries on DBLP data set and some of their results.

UCRL-TR-230893

